Larval Amphibian Ecology

Materials produced by: Jennifer Pramuk, Ph.D.
Curator of Herpetology
Bronx Zoo/Wildlife Conservation Society
Michael McFadden

Amphibian Larvae

- Have hatched
- Are morphologically distinct
- Are non-reproductive
- Passes through metamorphosis
- Usually are aquatic and feeding (with exceptions)

Direct developing
Eleutherodactylus eggs

Phytotelm breeders:
e.g., Dendrobates pumilio
Salamanders

• Morphology: conserved
• Elongated, salamander-like appearance from early on in development
• External gills, tail fin, large heads, no eyelids
• Skeleton contains bone, teeth in jaws

Salamanders: Larval types

• Larviform
• Body shape varies with habitat
• Terrestrial
• Pond type
• Stream type
• Mountain-brook type
Salamanders: Metamorphosis

- More gradual than in anurans
- Tail fin reduces (resorbed)
- Skin becomes thicker
- Gills resorbed, gill slits close
- Lungs develop
- Palate restructuring
- Teeth become pedicellate

Salamanders

- Larviform (i.e. neotenic or paedomorphic):
 - Adults that look like larvae (failure to metamorphose completely)
 - Some obligate, others facultative

Hi, I’m Larviform
Larval salamander ecology
Developmental modes:
• Eggs laid: aquatic eggs, aquatic larvae (most spp.)
• Non aquatic eggs and aquatic larvae
• Non aquatic eggs and direct development (e.g., Plethodon, Ensatina, Aneides + Bolitoglossini)
• Viviparity (e.g., salamandrids)

Salamanders: Diets
• Almost all are carnivorous
• Suction feeding
• Pond dwellers: small prey (e.g., zooplankton)
• Stream dwellers: larger prey
• Cannibalism is common
Salamanders

- Larval period: varies between 40 days (e.g., *Hemidactylium scutatum*) to 5 years (*Cryptobranchus alleganiensis* and *Necturus maculosus*).
- Development time dependent on food availability and water temp.

Frogs
Frogs: Tadpole Morphology

- Limbs appear relatively late as larvae
- Gills quickly covered with operculum (front legs develop behind operculum first)

Frogs: Tadpole Morphology

- Oral disc (jaw sheaths, labial teeth, lobes and papillae)
- Keratinized mouthparts (jaw sheaths and labial teeth)
- Variable number of tooth rows & papillae
Frogs: Tadpole Types
Grace Orton

- Type 1: Pipidae + Rhynophrynidae
- Type 2: Microhylidae
- Type 3: *Ascaphus, Leiopelma*, Bombinatoridae, + Discoglossidae
- Type 4: all other frogs

Frogs: Internal Morphology

- Path of digestion:
 Branchial basket>esophagus>manicotto glandulare (secretes HCl, enzymes)
- Mid and hindguts (elongated)
- Nitrogenous wastes excreted by kidneys as ammonia
- Reproductive organs begin to differentiate midway through development
- Cutaneous respiration primary
Frogs: Functional Morphology

- Feeding and respiratory systems:
 - Water taken in through mouth
 - Passes across gills
 - Exits through spiracle

Tadpole Habitats and microhabitats

- Benthic, midwater, surface feeders
- Burrow in substrate of streams
- Suctorial mouthparts, belly suckers

Amolops sp.
Tadpole Habitats and microhabitats

Some primarily predator (e.g., fish) free
- Phytotelms
- Tree holes, bamboo stalks
- Seed husks

Selected based on abiotic factors:
- Dissolved O_2
- Water depth, flow rate
- Substrate texture and quality
- Ephemerality
- Temperature

Tadpole Feeding

Filter feeding
Carnivorous (e.g., *Hymenochirus*, *Ceratophrys*)
Cannibalistic (e.g., *Rhinophrynus*)
Cannibalistic “morphs” in *Scaphiopus* and *Spea*
Mutualist nematodes in hindguts of *Rana catesbeiana*
Frog life cycle

- As little as 8 days (*Scaphiopus couchii*)
- As long as 2–3 years (some high altitude *Rana*, leptodactylids) or up to 5 years (*Ascaphus*)
- Determining factors (other than phylogeny): food availability, temperatures, density of conspecifics, competitors, predators
- High density retards development because of proteinaceous compound

![Scaphiopus couchii](image)

Ecomorphology

Tremendous adaptive radiation
Body shape etc., determined by:
1) Source of energy
2) Type of aquatic environment
3) Feeding biology

![Ecomorphology](image)

Rana palmipes (slow waters)
Megophrys montana (slow waters)
Hyla rivularis (stream dweller)
Hyla bromeliacia (bromeliad dwelling)
Staging larvae: Gosner stages

Frogs: Metamorphosis

- Metamorphosis: relatively abrupt

Drastic morphological changes:
- Digestive gut shortens; stomach forms
- Tadpole mouthparts disappear; replaced by teeth, etc.
- Movable eyelids
- Lungs form
- Cartilaginous skeleton replaced with bone
- Tail resorbed
- Limbs form
Caecilians

- Very poorly known
- Most (70%) are oviparous; mostly with aquatic larvae
- Direct development occurs in Caeciliidae
- Viviparity occurs in African and S. American species of Caeciliidae, all Typhlonectidae, and *Scolecomorphus*

Boulengerula taitanus
Caecilian larvae

- Hatched at relatively advanced stage
- Lungs well developed
- Larvae lack tentacles
- Lateral line developed
- Ampullary (electroreceptive) organs prominent on head

Ichthyophis embryo

Caecilian larval ecology

- Mostly unknown
- *Ichthyophis* and *Epicrinops*: found in mud or under objects at water’s edge; larval development up to a year
- Likely nocturnal
- Subterranean during day, forage at surface at night?

WHO KNOWS??
Caecilians: Metamorphosis

- Relatively gradual
- External gills lost within days of hatching
- Lateral line, tail fins lost at metamorphosis
- Scaled species gain scales
- Color change

Frogs, salamanders, and caecilians compared

Caecilians and salamanders:
- General morphological resemblance to adult
- Metamorphosis is gradual
- Predaceous, functional teeth and jaws

Anurans:
- Larvae dramatically different from adults
- Lack true teeth, long digestive tract
- Metamorphosis is dramatic
Behavior and Physiology of Larval Amphibians

Abiotic factors:
- Light (mostly averse to light = negatively phototaxic)
- O₂ content:
- Temperature
- Salt tolerance

Parental care:
- Egg attendance
- Feeding unfertilized eggs to offspring
Behavior and Physiology of Larval Amphibians

Parental care:
• Carrying tadpoles
• Nest chamber (e.g., *Plethodontohyla inguinalis*)
• Transporting tadpoles to more favorable environment

Behavior and Physiology of Larval Amphibians

• Social interactions
• Aggregations in response to abiotic factors
• Predator avoidance
• Thermoregulation (e.g., *Bufo* tads)
• Schooling polarized or not
Metamorphosis

- Under hormonal control
- Growth regulated by prolactin (pituitary gland), thyroid stimulating hormone (pituitary gland), corticotrophin releasing hormone (hypothalamus)
- **Obligate** = metamorphosis always takes place
- **Facultative** = may or may not occur

Metamorphosis: Biochemical change

- Hormones
- Blood: hemoglobin with higher O₂ affinity
- Liver: Ammonotelism > ureotelism
- Skin: Osmoregulation improves
- Eye: eye pigments change
Metamorphosis: Morphological change

- **Skeleton**: e.g., development of limbs; increased ossification
- **Skin**: becomes thicker
- **Musculature**: e.g., degeneration of tail
- **Digestive system**: In frogs, drastic; metamorphs nonfeeding
- **Urogenital system**: pronephric kidney > to adult (varies)
- **Sensory systems**: Lateral lines degenerate; tentacle (caec.) develops

Metamorphosis

- **Plasticity**
- **Rate of metamorphosis modulated by environmental cues**

E.g.,: drying pond will increase hormones which stimulate growth

Downside: often metamorphose at smaller size
Larval husbandry

- Little known about many taxa
- All husbandry information gathered on various taxa should be recorded and made available.

Caecilians (Viviparous spp.)
- Viviparous, miniature adults
- Some evidence that viviparous offspring may be better kept with parents
- Lower water depth for gravid mothers
Larval husbandry

Caecilians (Oviparous spp.)
- Some direct developing (larvae treated as viviparous spp.)
- Egg clutches found in moist ground, never in water
- Larvae amphibious
- Carnivorous
- Maternal attendance (why?)

Larval husbandry

Caudates
- All carnivorous, some cannibalistic
- Maintain in low densities to limit intraspecific competition
- Will feed on animal-based foods (e.g., small worms, daphnia, brine shrimp, chopped fish, mosquito larvae, etc.)
Larval husbandry

Anurans

- Much more to consider re. diversity
- Most tadpoles are herbivorous or omnivorous
- Potential foods: commercial fish flakes, tabs, Sera Micron (filter feeders), “Zippy flakes”
- Vary foods as much as possible
- **Water quality!**

Stocking Density

- The stocking density of tadpoles will largely depend on the water quality and the amount of water flowing through.
- Increased density may cause:
 - Increased competition
 - Decreased water quality
 - Smaller metamorph size
 - Longer larval period
 - Lower survivorship
Water Quality

- Water should be tested frequently to determine the quality of the water.
- Appropriate filtration or water changes should be carried out to maintain quality.
- This will largely depend on the stocking density and the quality of source water.

Feeding

- Largely dependant on the species.
- The diet should be varied if possible.
 - Commercial foods, including Sera micron, algal flakes, spirulina flakes, various fish flakes.
 - Frozen endive or lettuce.
 - Naturally growing algae.
 - For omnivorous species, bloodworm and shrimp may also be added.
Water Temperature

• Attempt to replicate the temperature in the natural habitat of the species being raised.
• As a general rule:
 \[\uparrow \text{temp} = \downarrow \text{larval period}, \downarrow \text{metamorph size} \]
 \[\downarrow \text{temp} = \uparrow \text{larval period}, \uparrow \text{metamorph size} \]

As metamorphosis approaches….

• Ensure that the tadpoles have a land area so that they can climb out of the water and not drown.
• It is equally important to make sure that the enclosure is escape-proof for the young frogs.