The Principle of Amphibian Husbandry

Materials produced by:

R. Andrew Odum, Curator
Department of Herpetology
Toledo Zoological Society

What is Husbandry?

The discipline of care and breeding of animals in captivity.

Using Scientific Principles

Taking good care of your animals.

Maintaining Welfare (Well Being)

How do we know? Metrics

- Absence of disease
- Normal Behaviors
- No Abnormal Behaviors
- Can reproduce
- Not Dead The dead do not have welfare

Needs

- Appropriate Environment
- Water in appropriate form
- Appropriate Food
- Appropriate Intra-specific interaction
- Energy
 - Light
 - Heat
 - UVB

Know Your Animals

These are not reptiles, birds, or mammals

Homeostasis

The inside/outside barrier

Different animals have different requirements

Know your subject!

- Review Literature
- Ask others
- Observe and learn from your animals
- Share

Please do a good job on my home

The Amphibian Environment

The appropriate environment is 95% of good amphibian husbandry

Enclosure

One species, several life stages

Enclosures may be designed for only one life stage

Enclosure Functions

- Maintenance
- Breeding
- Larval Rearing
- For Metamorphosis
- Growth of juveniles

The Environment

Heterogeneity

Creating a micro-environments

Environment

Think on the view point of the amphibian

Different micro environments are necessary for difference physiological process.

The Enclosure

It's a system

Environment Parameters

- Temperature
- Water in the air (Water Vapor)
- Water as a liquid
- Substrate
- Cage furnishings (for function, and physical and psychological needs)
- Light
 - Photo Period
 - Quality
 - UVB

Temperature Gradient

Cage Temperature

The importance of thermal options in many species

General Rules: Start with lower temperature and add heat in specific areas

Hibernation

The period of low temperature dormancy

Water

H₂O Quality will be presented later in the workshop.

Water as a Liquid

- Accessible
- Appropriate quality
- Appropriate form
 - Standing water
 - Running water
 - Surface moisture
 - Mist and Rain

Standing

Flowing water

Mist and Rain Systems

Water Vapor (Its all relative)

- Relative Humidity (RH)
- Microenvironments
 - May be very different in different parts of cage.

RH - Relative Humidity

- The amount of water in the air compared to the amount of water the air can hold
- Increase in temperature increases the amount of water the air can hold
- Lower pressures increase the amount of water the air can hold

RH Microenvironment

Moisture in substrate

Frogs and other amphibians absorb water through their skins

Drinking patch

Substrate

Its more than just the stuff on the bottom of the cage

Substrates (Artificial)

- Paper towels
- •Astroturf
- Rubber mats
- Screening
- Cage bottom (none)

Substrates (Natural)

- Gravel
- Coconut husks
- Potting soil
- Moss
 - Living
 - Dead
- Sand
- Rocks
- Mulch

Gravel

Foundation of the environment

Moss growing on palm husk on gravel

Potting Soil

Leaf litter

Rocks

Substrates (Additives)

- Activated carbon
- Dolomite (CaCO₃)

Maintaining and cleaning the environment

Water in – Water out

- Drainage
 - Water flow
 - Cleaning

Adding drains to a glass tank

It is easier than you think

Caution: Make sure the tank glass is not tempered

Bulkhead Fitting

The False Bottom

A drainage system

Cage structures

- Environmental Complexity
- Refugia
- Visual barriers
- Breeding sites

Refugia

Perching

Oviposition Sites

Creating an Environment

North
American Cave
Salamander

Other living components in the Enclosure

- Plants
- Bacteria
- Invertebrates

Light and UVB

Light and UVB is important component of the amphibian environment

Halogen bulbs

Produce light, excellent UVB, and a heat spot

Remember containment!

Other considerations

- Social groups
- Medical Treatment
- Disease control

What about larvae?

A day's work

Larva Habitats

Dendrobates

Quick Cups

Dendrobatids

A second birth

Metamorphosis

Simple Metamorphosis Chamber

All stages must be accommodate Larval -> Juvenile

Metamorphosis enclosures

Bring it all together

Bringing it all together

Brining it all together Display

Science and Husbandry

Husbandry

Science

Helps us get closer to understanding the truth

Problem Solving

What keepers do every day!

What you can't measure, you can't understand.

Measurements

- Temperature
- Mass
- Length
- Light
- Events
- Observable behavior
- Etc.

Measuring Technology

Infrared remote temperature sensing

Newer Technology Data Loggers

Digitized Data

Digitized Data

Example

Halogen Bulbs D2 –D3 Conversion

Question?

Is there a low cost source for UVB that could be used for amphibian husbandry?

The Ability to Measure

Precision

Discovery

Confirmation with a Biological Metric

Source	Irradiance (µW/cm^2) @36cm	% product synthesized
20W Reptisun 5.0	6.8	0.22
20W Sylvania 350 Blacklight	3.8	0.63
50W Eiko EXT 13 degree	<u>4.4</u>	3.49
50W Eiko Supreme 10,000hr	<u>10.7</u>	9.83
50W Eiko Supreme 6,000hr	<u>11.3</u>	<u>10.8</u>
160W Westron MV Spot	89.8	2.11
Sunlight 1200hrs Dallas, TX, 1 Apr 2004	128	10.01
Sunlight 1200hrs Dallas, TX, 9 Aug 2004	124	10.07

Applied Science

Kihansi Spray Toads

Example:

You start feeding your frogs a new vitamin supplement. They breed a month later. Did the vitamins help them to breed?

The three Cs

The three Cs

- Coincidence
- Correlative
- Causative

Life's complexities

- Life is a very complex system
- Reptiles and Amphibians are very complex
- Rarely Black and White

The scientific method

Phyllobates vittatus

Which water supply is better for rearing Dendrobatid larvae?

- Aged Water
- Carbon Filter Water
- Softened Carbon Filtered Water
- RO water

Hypothesis: RO water, which is closest to rainwater, will be a superior medium for rearing *Phyllobates*.

The Experiment

- Four Groups
- Four Different Water Sources
- Each Fed Same Diet
- Each Provided Same Husbandry (enclosures, water volume, temperature, light, water changes, etc.)
- Compare Metamorphic Success and Deaths

Data

Treatment	Died	Meta.	Row
			Totals
Carbon	8	11	<u>19</u>
Aged	11	9	<u>20</u>
RO	11	10	<u>21</u>
Softened	6	12	<u>18</u>
All Groups	<u>36</u>	<u>42</u>	<u>78</u>

Using data analysis tools Visualization

Learn what others have done

- Library
 - Books
 - Articles
- The value of peer review
- INTERNET
- Contact others that work with the species

Few groups of animals in zoos afford more opportunity for research than the Amphibia!

Focus on what is needed to save them

Finish